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1 Introduction

Shortest path problems seek the shortest paths between specific source and sink nodes in a
network. The Single Source (or Sink) Shortest Path (SSSP) algorithms compute a shortest
path tree for a specific source (or sink) node which usually employ combinatorial or network
traversal techniques such as label-setting methods and label-correcting methods [2]; or linear
programming (LP) based techniques like the primal network simplex method [15, 16] and
the dual ascent method [24]. On the other hand, the All Pairs Shortest Paths (APSP)
algorithms compute shortest paths for all the node pairs and are based on algebraic or
matrix techniques such as Floyd-Warshall [12, 29] and Carré’s [6, 7] algorithms. Recently,
Wang et al. [28] gives an algebraic Multiple Pairs Shortest Paths (MPSP) algorithm which
is more efficient than SSSP and APSP algorithms for computing shortest paths for specific
node pairs.

For a digraph G := (N,A) with n = |N | nodes and m = |A| arcs, obviously the APSP
problem can be solved by applying an SSSP algorithm n times. We call such methods
repeated SSSP algorithms. Repeated SSSP algorithms usually perform arc traversal oper-
ations and require O(m) storage and therefore are more suitable for sparse networks. On
the other hand, algebraic APSP algorithms perform operations on a n× n distance matrix
X = [xij ] that stores temporary distance label for each node pair. Thus APSP algorithms
require more storage (O(n2)) and are more suitable for dense networks. This paper focus
on the topics of algebraic APSP algorithms.

∗I-Lin Wang was partially supported by the National Science Council of Taiwan under Grant NSC102-
2221-E-006-141-MY3.
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Algebraic shortest path algorithms are closely related to path algebra as discussed in
[3, 7].whose operators (⊕,⊗, null, e) have the following meanings: a ⊕ b means min{a, b},
a⊗ b means a+ b, null (i.e., 0) means ∞, and e (i.e., identity) means 0. Using path algebra,
the APSP problem is to determine the n×n shortest distance matrix X = [xij ] that satisfies
the Bellman’s equation X = CX⊕In [7], where C = [cij ] is the n×n measure matrix storing
the length of arc (i, j) (represented as cij , cij = ∞ if (i, j) /∈ A) and In is the identity matrix.
Therefore, we may apply techniques of solving systems of linear equations to solve the APSP
problem. For example, direct methods like the Gauss-Jordan and Gaussian elimination cor-
respond to the Floyd-Warshall [12, 29] and Carré’s [6, 7] algorithms, respectively; iterative
methods like the Jacobi and Gauss-Seidel methods actually correspond to the SSSP algo-
rithms by Bellman [4] and Ford [13], respectively (see [7] for proofs of their equivalence); and
the relaxation method of Bertsekas [5] can also be interpreted as a Gauss-Seidel technique
(see [24]). Since the same problem can also be viewed as inverting the matrix (In −C), the
escalator method [22] for inverting a matrix corresponds to an inductive APSP algorithm
proposed by Dantzig [9]. Finally, the decomposition algorithm proposed by Mill [21] (also,
Hu [18]) decomposes a huge graph into parts, solves APSP for each part separately, and
then reunites the parts. This resembles the nested dissection method (see Chapter 8 in [10]),
a partitioning or tearing technique to determine a good elimination ordering for maintaining
sparsity, when solving a huge system of linear equations. All of these methods (except the
iterative methods) have O(n3) time bounds and are believed to be efficient for dense graphs.

It can be shown that the solution to the Bellman’s equation is X∗ = (In ⊕ C)n−1.
Shimbel [26] suggests a naive algorithm using log(n) matrix squarings of (In ⊕ C) to solve
the APSP problem. To avoid many distance matrix squarings, some O(n3) distance matrix
multiplication methods such as the revised matrix [17,30] and cascade [11,19,30] algorithms
perform only two or three successive distance matrix squarings. However, Farbey et al. [11]
show that these methods are still inferior to the Floyd-Warshall algorithm which only needs
a single distance matrix squaring procedure.

Aho et al. (see [1], pp.202-206) show that computing (In ⊕ C)n−1 is as hard as a sin-
gle distance matrix squaring which can be done in O(n2.5) time by Fredman [14], or in

O(n3((log log n)/ log n)
1
2 ) time by Takaoka [27]. Recently, many algebraic APSP algorithms

of subcubic time bounds exploit block decomposition and fast matrix multiplication tech-
niques but are only applicable for specialized networks which are unweighted and undirected,
or require the arc lengths to be either integers of small absolute value [31]. These methods
are designed mainly for improving the theoretical complexity but not for practical efficiency
consideration.

Inspired by Carré’s algorithm [6,7] which use Gaussian elimination to solveX = CX⊕In,
we propose a new algebraic APSP algorithm FRLU that is as efficient as Carré’s algorithm
and Floyd-Warshall algorithm in solving APSP on a complete graph. We use the name FRLU
for our algorithm since it contains procedures similar to the LU decomposition in linear
algebra but the operations are conducted in both forward (F) and reverse (R) directions.
FRLU conducts operations similar to the MPSP algorithm DLU proposed by Wang et
al. [28], but converges to the optimal solution in different sequence of operations. FRLU can
handle networks with general arc length (i.e. an arc may have negative length). In particular,
when a network contains a negative cycle, FRLU can detect it with fewer operations than
Floyd-Warshall algorithm (see the proof of Theorem 3.3 for details).

This paper contains five Sections. Section 1 reviews APSP algorithms. Section 2 intro-
duces some definitions and basic concepts. Section 3 presents our APSP algorithm (FRLU )
and proves of its correctness. In Section 4, we demonstrate how FRLU may save some com-
putational work in computing shortest distances for multiple pairs shortest path (MPSP)
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problems. We also conduct computational tests to evaluate the empirical performance of
FRLU. Section 5 concludes our work and proposes future research.

2 Preliminaries

Here we give notations and definitions used in this paper. The distance matrix [xij ] is an
n × n array in which xij , initialized as cij , records the length of a path from i to j. Let
[succij ] denote an n × n successor matrix in which succij , initialized as j, represents the
node that immediately follows i in a path from i to j. Using [succij ], a path from i to j can
be traced. In particular, suppose i → k1 → k2 → · · · → kr → j is a path in G from i to
j, then k1 = succij , k2 = succk1j , . . . , kr = succkr−1j , and j = succkrj . Let x∗

ij and succ∗ij
denote the shortest distance and successor from i to j in G.

Figure 1: Illustration of node ordering and subgraphs H([2, 4]), H([1, 3] ∪ 5)

A triple comparison s → k → t compares xsk + xkt with xst, which is a process to
update the length of arc (s, t) to be min{xst, xsk + xkt} or to add a fill-in arc (s, t) to the
original graph with length equal to xsk+xkt, if (s, t) /∈ A. Shortest path algorithms operate
by performing sequences of triple comparisons [7]. For example, every SSSP algorithm
performs distance label updating operation which updates d[j] = min

i:(i,j)∈A
{d[j], d[i] + cij},

and this is exactly a triple comparison. Actually, even network simplex method implicitly
performs a form of triple comparison when it calculates reduced costs. Therefore, we can
measure the efficiency of algorithms by counting the number of triple comparisons they
perform.

We say that node i is higher (lower) than node j if the index i > j (i < j). A node
i in a node set LIST is said to be the highest (lowest) node in LIST if i ≥ k ( i ≤ k) ∀
k ∈ LIST . An arc (i, j) is pointing downwards (upwards) if i > j (i < j) (see Figure 1).

Define an induced subgraph denoted H(S) on the node set S which contains only arcs
(i, j) of G with both ends i and j in S. Let a < b and [a, b] denote the set of nodes
{a, (a + 1), . . . , (b − 1), b}. Figure 1 illustrates examples of H([a, b]) and H([1, a] ∪ b).
Thus H([1, n]) ≡ G and can be decomposed into three subgraphs for any given OD pair
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(s, t) :(1) H([1,min{s, t}] ∪ max{s, t}) (2) H([min{s, t},max{s, t}]) and (3) H(min{s, t} ∪
[max{s, t}, n]). Thus, any shortest path in G from s to t is the shortest shortest paths among
these three induced subgraphs. Here in this paper, we give a new algebraic algorithm that
systematically calculate shortest paths for these cases to obtain a shortest path in G from s
to t.

For solving MPSP problems that arise often in multicommodity networks such as telecom-
munication and transportation networks, FRLU may save some computational work com-
pared with the Floyd-Warshall algorithm, with proper ordering on the indices of nodes. For
convenience, we present FRLU as an MPSP algorithm which solves shortest distances for a
set of q requested OD pairs Q := {(si, ti) : i = 1, . . . , q}. Thus the original APSP problem is
just a special case where the requested OD pairs covers the entire n× n OD matrix except
the diagonal entries.

3 Algorithm FRLU

Given a set of q requested OD pairs Q := {(si, ti) : i = 1, . . . , q}, we set i0 to be the index of
the lowest origin node in Q, j0 to be the index of the lowest destination node in Q, and k0
to be min

i
{max{si, ti}}. Algorithm FRLU computes x∗

st for each s ≥ k0, t ≥ j0 and for each

s ≥ i0, t ≥ k0. Thus the shortest path lengths for all the OD pairs in Q will be computed
without computing the entire shortest path trees as required by other SSSP algorithms. To
trace shortest paths for all the requested OD pairs, FRLU has to compute the shortest path
trees rooted at sink node t for each t = j0, . . . , n. This can be done by setting i0 := 1 and
k0 := j0 in the algorithm.

Algorithm 1 FRLU(Q := {(si, ti) : i = 1, . . . ,q})
begin

Initialize i0, j0, k0, [xij ] and [succij ];
Forward LU ;
Acyclic LU(i0, j0);
Reverse LU(i0, j0, k0);

end

Algorithm FRLU first initializes [xij ] and [succij ], then performs three procedures: (1)
Forward LU (2) Acyclic LU(i0, j0) and (3) Reverse LU(i0, j0, k0). In particular, to solve
a shortest path in G from s to t, Forward LU first calculates a shortest path in the
subgraph H([1,min{s, t}] ∪ max{s, t}), then Acyclic LU(i0, j0) further considers the sub-
graph H([min{s, t},max{s, t}]) and calculates a shortest path in H([1,max{s, t}]). Then
Reverse LU(i0, j0, k0) includes the subgraph H(min{s, t}∪ [max{s, t}, n]) and finds a short-
est path in G. Details about each procedure are discussed in the following sections.

3.1 Procedure Forward LU

The first procedure Forward LU resembles the LU decomposition in Gaussian elimina-
tion. In the kth iteration of LU decomposition in Gaussian elimination, we use diagonal entry
(k, k) to eliminate entry (k, t) for each t > k. This will update the (n−k)×(n−k) submatrix
and create fill-ins. Similarly, Forward LU sequentially uses each node k = 1, . . . , (n− 2) as
an intermediate node to update each entry (s, t) of [xij ] and [succij ] that satisfies k < s ≤ n
and k < t ≤ n as long as xsk < ∞, xkt < ∞ and xst > xsk + xkt.
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Procedure Forward LU
begin

for k = 1 to n− 2 do
for s = k + 1 to n do

for t = k + 1 to n do
if s = t and xsk + xkt < 0 then

Found a negative cycle; STOP
if s ̸= t and xst > xsk + xkt then

xst := xsk + xkt; succst := succsk;
end

Figure 2(a) illustrates the operations of Forward LU on a 5-node graph. It sequentially
uses node 1, 2, and 3 as intermediate nodes to update the remaining 4× 4, 3× 3, and 2× 2
submatrix of [xij ] and [succij ].

Graphically speaking, Forward LU can be viewed as a process of constructing the aug-
mented graph G′ obtained by either adding fill-in arcs or changing some arc lengths on the
original graph when better paths are identified using intermediate nodes with indices smaller
than both end nodes of the path.

Forward LU performs triple comparisons s → k → t for each s ∈ [2, n], t ∈ [2, n]
and for each k = 1, . . . , (min{s, t} − 1). In particular, a shortest path for any node pair
(s, t) in H([1,min{s, t}] ∪ max{s, t}) will be computed, and thus xn,n−1 = x∗

n,n−1 and
xn−1,n = x∗

n−1,n since H([1, n− 1] ∪ n) = G. (see Corollary 3.2)

Theorem 3.1. After performing procedure Forward LU , [xst] represents the length of the
shortest path from s to t in H([1,min{s, t}] ∪max{s, t}).

Proof. See [28].

Corollary 3.2. (a) Procedure Forward LU will correctly compute x∗
n,n−1 and x∗

n−1,n.
(b) Procedure Forward LU will correctly compute a shortest path for any node pair (s, t) in
H([1,min{s, t}] ∪max{s, t}).

Proof. See [28].

The next result demonstrates that any negative cycle will also be identified in procedure
Forward LU .

Theorem 3.3. Suppose there exists a p-node cycle Cp, i1 → i2 → i3 → · · · → ip → i1, with
negative length. Then, procedure Forward LU will identify Cp as a negative cycle faster
than the Floyd-Warshall algorithm does.

Proof. Without loss of generality, let i1 be the lowest node in the cycle Cp, ir be the second
lowest, is be the second highest, and it be the highest node. Let length(Cp) denote the
length function of cycle Cp. Assume that length(Cp) =

∑
(i,j)∈Cp

cij < 0. In Forward LU ,

before we begin iteration i1(using i1 as the intermediate node), the length of some arcs of
Cp might have already been modified, but no arcs of Cp will have been removed nor will
length(Cp) have increased. After we finish scanning the downward arcs entering i1 and
upward arcs leaving i1, we can identify a smaller cycle Cp−1 by skipping i1 and updating
xipi2 = min{xipi2 , xipi1 + xi1i2} (it may add a new arc (ip, i2) to G if (ip, i2) /∈ A). In
particular, Cp−1 is ip → i2 → · · · → ip−1 → ip, and length(Cp−1) = length(Cp) − (xipi1 +
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Figure 2: Solving a 3 pairs shortest path problem on a 5-node graph by Algorithm FRLU(Q)

xi1i2 −xipi2). Since xipi2 ≤ xipi1 + xi1i2 by the algorithm, we obtain length(Cp−1) ≤
length(Cp) < 0. The lowest-index node in Cp−1 is now ir, thus we will again reduce the
size of Cp−1 by 1 arc in iteration ir. We iterate this procedure, each time processing the
current lowest node in the cycle and reducing the cycle size by 1 arc, until finally a 2-
node cycle C2, is → it → is, with length(C2) ≤ length(C3) ≤ · · · ≤ length(Cp) < 0 is
obtained. In other words, any negative cycle Cp will induce a negative xitit in procedure
Forward LU . Thus by checking whether any diagonal entry in [xij ] becomes negative after
Forward LU , we shall know whether there exists a negative cycle. Forward LU performs

at most

n−2∑
k=1

n∑
s=k+1

n∑
t=k+1,s̸=t

(1) = 1
3n(n − 1)(n − 2) steps to identify a negative cycle, if one

exists. On the other hand, Floyd-Warshall algorithm takes
n−2∑
k=1

n∑
s=1
s̸=k

n∑
t=1

t ̸=s,t ̸=k

(1) = n(n−1)(n−2)

steps to identify a negative cycle in the worst case. Thus, FRLU can identify a negative
cycle in a smaller time bound (up to a constant factor) than Floyd-Warshall algorithm

Thus Forward LU identifies a negative cycle, if one exists. It also computes the shortest
distance in H([1,min{s, t}] ∪max{s, t}) from each node s ∈ N to each node t ∈ N\{s}. In
other words, this procedure computes shortest path lengths for those requested OD pairs
(s, t) whose shortest paths have all intermediate nodes with index lower than min{s, t}.
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3.2 Procedure Acyclic LU(i0, j0)

The second procedure, Acyclic LU(i0, j0) contains two symmetric procedures, Acyclic L(j0)
and Acyclic U(i0), which perform triple comparisons on the lower and upper triangular part
of [xij ] and [succij ] respectively. Figure 2(b) illustrates how Acylic L(2) updates each entry
(s, t) that satisfies s > t ≥ 2 in the lower triangular part of [xij ] and [succij ], and how
Acylic U(1) updates each entry (s, t) such that t > s ≥ 1 in the upper triangular part of
[xij ] and [succij ].

Procedure Acyclic LU(i0, j0)
begin

Acyclic L(j0);
Acyclic U(i0);

end

Procedure Acyclic L(j0)
begin

for t = j0 to n− 2 do
Get D L(t);

end

Subprocedure Get D L(t)
begin

for s = t+ 2 to n do
for k = t+ 1 to s− 1 do

if xst > xsk + xkt then
xst := xsk + xkt; succst := succsk;

end

The lower and upper triangular parts of [xij ] induce two acyclic subgraphs, G′
L and G′

U ,
of augmented graph G′. They can be easily identified by aligning the nodes by ascending
order of their indices from the left to the right, where G′

L (G′
U ) contains all the downward

(upward) arcs of G′.
Graphically, Acyclic L(j0) performs sequences of shortest path tree computations in G′

L.
Its subprocedure Get D L(t), resembling the forward elimination in Gaussian elimination,
performs triple comparisons to update xst by min{xst, xsk+xkt} for each k = (t+1), . . . , (s−
1), and for each s = (t + 2), . . . , n. Since G′

L is acyclic, the updated xst thus corresponds
to the shortest distance in G′

L from each node s > t to node t. Acyclic L(j0) repeats
Get D L(t) for each root node t = j0, . . . , (n − 2). Thus for each OD pair (s, t) satisfying
s > t ≥ j0, we obtain the shortest distance in G′

L from s to t which in fact corresponds to
the shortest distance in H([1, s]) from s to t. (see Corollary 3.5(a)) Also, this procedure
gives x∗

nt, the shortest distance in G from node n to any node t ≥ j0. (see Corollary 3.5(c))
Acyclic U(i0) is similar to Acyclic L(j0) except it is applied on the upper triangular part

of [xij ] and [succij ], which corresponds to the induced subgraph G′
U . Each application of

subprocedure Get D U(s) gives the shortest distance in G′
U from each node s to each node

t > s, and we repeat this subprocedure for each root node s = i0, . . . , (n− 2). Thus for each
OD pair (s, t) satisfying i0 ≤ s < t, we obtain the shortest distance in G′

U from s to t which
in fact corresponds to the shortest distance in H([1, t]) from s to t. (see Corollary 3.5(b))
Also, this procedure gives x∗

sn, the shortest distance in G from any node s ≥ i0 to node n.
(see Corollary 3.5(c))
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Procedure Acyclic U(i0)
begin

for s = i0 to n− 2 do
Get D U(s);

end

Subprocedure Get D U(s)
begin

for t = s+ 2 to n do
for k = s+ 1 to t− 1 do

if xst > xsk + xkt then
xst := xsk + xkt; succst := succsk;

end

Theorem 3.4. (a) A shortest path in H([1, s]) from node s > t to node t corresponds to a
shortest path in G′

L from s to t.
(b) A shortest path in H([1, t]) from node s < t to node t corresponds to a shortest path in
G′

U from s to t.

Proof. (a) Suppose such a shortest path in H([1, s]) from node s > t to node t contains p
arcs. In the case where p = 1, the result is trivial. Let us consider the case where p > 1. That
is, s → v1 → v2 → · · · → vp−2 → vp−1 → t is a shortest path in H([1, s]) from node s > t to
node t with (p− 1) intermediate nodes whose indices are smaller than max{s, t} = s. In the
case where every intermediate node with index smaller than min{s, t} = t < s, Theorem 3.1
already shows that Forward LU will compute such a shortest path and store it as arc (s, t)
in G′

L. So, we only need to discuss the case where some intermediate node with index in
the range [t+ 1, s− 1]. Suppose there exist r intermediate nodes, {ui : i = 1, . . . , r}, in this
shortest path in H([1, s]) from s to t, and s := u0 > u1 > u2 > · · · > ur−1 > ur > ur+1 := t.
We can break this shortest path into (r+1) segments: u0 to u1, u1 to u2,. . . , and ur to ur+1.
Each shortest path segment uk−1 → uk in H([1, s]) contains intermediate nodes that all have
lower indices than uk. Since Theorem 3.1 guarantees that Forward LU will produce an arc
(uk−1, uk) for any such shortest path segment uk−1 → uk and G′

L is acyclic, the original
shortest path s → v1 → v2 → · · · → vp−2 → vp−1 → t in H([1, s]) will be reduced to the
shortest path s → u1 → u2 → · · · → ur−1 → ur → t in G′

L. (b) Using a similar argument
to (a) above, the result follows immediately.

Corollary 3.5. (a) Procedure Acyclic L(j0) will correctly compute shortest paths in H([1, s])
for all node pairs (s, t) such that s > t ≥ j0.
(b) Procedure Acyclic U(i0) will correctly compute shortest paths in H([1, t]) for all node
pairs (s, t) such that i ≤ s < t.
(c) Procedure Acyclic L(j0) will correctly compute x∗

nt for each node t ≥ j0; Procedure
Acyclic U(i0) will correctly compute x∗

sn for each node s ≥ i0

Proof. (a) This procedure computes sequences of shortest path tree in G′
L rooted at node

t = j0, . . . , (n − 2) from all other nodes s > t. By Theorem 3.4(a), a shortest path in G′
L

from node s > t to node t corresponds to a shortest path in G from s to t where s is its
highest node since all other nodes in this path in G′

L have lower index than s. In other
words, such a shortest path corresponds to the same shortest path in H([1, s]). Including
the case of t = (n− 1) and s = n as discussed in Corollary 3.2(a), the result follows directly.
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(b) Using a similar argument as part (a), the result again follows directly. (c) These follow
immediately from part (a) and part (b).

Thus Ayclic LU(i0, j0) will have computed the shortest distance in H([1,max{s, t}])
from each node s ≥ i0 to each node t ≥ j0. In other words, this procedure computes shortest
path lengths for those requested OD pairs (s, t) whose shortest paths have all intermediate
nodes with index lower than max{s, t}.

3.3 Procedure Reverse LU(i0, j0, k0)

The final step Reverse LU(i0, j0, k0) is similar to the first procedure Forward LU but in
a reverse fashion. It computes the length of the shortest paths in H([1,max{s, t}] ∪ r) that
must pass through intermediate node r for each r = n down to (max{s, t} + 1) from each
origin s ≥ k0 to each destination t ≥ j0 and from each origin s ≥ i0 to each destination
t ≥ k0. Since previous procedures already give the shortest distances in H([1,max{s, t}])
from each node s ≥ i0 to each node t ≥ j0, Reverse LU(i0, j0, k0) continues the remaining
necessary triple comparisons to compute the x∗

st in G. Figure 2(c) illustrates the operations

Procedure Reverse LU(i0, j0,k0)
begin

for k = n down to k0 + 1 do
for s = k − 1 down to i0 do

for t = k − 1 down to j0 do
if s ̸= t and xst > xsk + xkt then

xst := xsk + xkt; succst := succsk;
end

of Reverse LU(1, 2, 3) which updates each entry (s, t) of [xij ] and [succij ] that satisfies
1 ≤ s < k, 2 ≤ t < k for each k = 5 and 4. Note that x∗

st for all s ≥ i0, t ≥ k0 and s ≥ k0,
t ≥ j0 will have been obtained after Reverse LU(i0, j0, k0) and thus shortest distances for
all the requested OD pairs in Q will have been computed.

Lemma 3.6. (a) Every shortest path in G from s to t that has a highest node with index
h > max{s, t} can be decomposed into two segments: a shortest path from s to h in G′

U , and
a shortest path from h to t in G′

L.
(b) Every shortest path in G from s to t can be determined as the shortest of the following
two paths: (i) the shortest path from s to t in G that passes through only nodes v ≤ r,
and (ii) the shortest path from s to t in G that must pass through some node v > r, where
1 ≤ r ≤ n.

Proof. (a) This follows immediately by combining Corollary 3.5(a) and (b). (b) It is easy
to see that every path from s to t must either passes through some node v > r or else not.
Therefore the shortest path from s to t must be the shorter of the minimum-length paths of
each type.

Theorem 3.7. After performing the kth iteration of the outer loop, Reverse LU(i0, j0, k0)
will correctly compute x∗

n−k,t and x∗
s,n−k for each s = i0, . . . , (n − k − 1), and for each t =

j0, . . . , (n− k − 1) where k ≤ (n− k0).

Proof. After proceduresAcyclic LU(i0, j0), we will have obtained shortest paths inH([1,max{s, t}])
from each node s ≥ i0 to each node t ≥ j0. To obtain the shortest path in G from s
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to t, we remain to check those shortest paths that must pass through node h for each
h = (max{s, t}+1), . . . , n. By Lemma 3.6(a), such a shortest path can be decomposed into
two segments: from s to h and from h to t. Note that their shortest distances, xsh and xht,
will have been calculated by Acyclic U(i0) and Acyclic L(j0), respectively. For each node
s ≥ i0 and t ≥ j0, Corollary 3.5(c) shows that x∗

nt and x∗
sn will have been computed by pro-

cedures Acyclic L(j0) and Acyclic U(i0), respectively. Define xk
st to be the shortest known

distance from s to t after the kth application of Reverse LU(i0, j0, k0), and x0
st to be the

best known distance from s to t before this procedure. Now we will prove this theorem by
induction. In the first iteration, Reverse LU(i0, j0, k0) updates x1

st := min{x0
st, x

0
sn + x0

nt}
= min{xst, x

∗
sn + x∗

nt} for each node pair (s, t) satisfying i0 ≤ s < n and j0 ≤ t < n.
For node pairs (n − 1, t) satisfying j0 ≤ t < (n − 1), x∗

n−1,t = min{x0
n−1,t, x

∗
n−1,n + x∗

nt}
by applying Lemma 3.6(b) with r = (n − 1). Likewise, x∗

s,n−1 is also determined for each
s satisfying i0 ≤ s < (n − 1) in this iteration. Suppose the theorem holds for iteration

k = k̂ < (n−max{s, t}). That is, at the end of iteration k = k̂, Reverse LU(i0, j0, k0) gives

x∗
n−k̂,t

and x∗
s,n−k̂

for each s satisfying i0 ≤ s < (n−k̂), and each t satisfying j0 ≤ t < (n−k̂).

In other words, we will have obtained x∗
n−r,t and x∗

s,n−r for each r = 0, 1, . . . , k̂, and for all

s ≥ i0, t ≥ j0. In iteration k = (k̂ + 1), for each t satisfying j0 ≤ t < (n− k̂ − 1), xk̂+1

n−k̂−1,t

:= min{xk̂
n−k̂−1,t

, xk̂
n−k̂−1,n−k̂

+ xk̂
n−k̂,t

} = min{xk̂
n−k̂−1,t

, x∗
n−k̂−1,n−k̂

+ x∗
n−k̂,t

} by assump-

tion of the induction. Note that the first term xk̂
n−k̂−1,t

has been updated k̂ times in the

previous k̂ iterations. In particular, xk̂
n−k̂−1,t

= min
0≤k≤(k̂−1)

{x0
n−k̂−1,t

, x∗
n−k̂−1,n−k

+ x∗
n−k,t}

where x0
n−k̂−1,t

represents the length of a shortest path in G from node (n − k̂ − 1) to

node t that has node (n − k̂ − 1) as its highest node. Substituting this new expression of

xk̂
n−k̂−1,t

into min{xk̂
n−k̂−1,t

, x∗
n−k̂−1,n−k̂

+ x∗
n−k̂,t

}, we obtain xk̂+1

n−k̂−1,t
:= min

0≤k≤k̂
{x0

n−k̂−1,t
,

x∗
n−k̂−1,n−k

+ x∗
n−k,t} whose second term min

0≤k≤k̂
{x∗

n−k̂−1,n−k
+ x∗

n−k,t} corresponds to the

length of a shortest path in G from node (n− k̂− 1) to node t that must pass through some

higher node with index v > (n − k̂ − 1) (v may be (n − k̂), . . . , n). By Lemma 3.6(b) with

r = (n − k̂ − 1), we conclude xk̂+1

n−k̂−1,t
= x∗

n−k̂−1,t
for each t satisfying j0 ≤ t < (n − k).

Likewise, xk̂+1

s,n−k̂−1
= x∗

s,n−k̂−1
for each s satisfying i0 ≤ s < (n− k̂ − 1) will also be deter-

mined in the end of iteration (k̂ + 1). By induction, we have shown the correctness of this
theorem.

Corollary 3.8. Procedure Reverse LU(i0, j0, k0) will terminate after performing (n − k0)
iterations of the outer loop, and correctly compute x∗

si,ti for each of the requested OD pairs
(si, ti), i = 1, . . . , q.

Proof. By setting k0 := min
i
{max{si, ti}}, the set of all the requested OD pairs Q is a subset

of node pairs {(s, t) : s ≥ k0, t ≥ j0} ∪ {(s, t) : s ≥ i0, t ≥ k0} whose x∗
st and succ∗st is shown

to be correctly computed by Theorem 3.7. Therefore Reverse LU(i0, j0, k0) terminates in
n − (k0 + 1) + 1 = (n − k0) iterations and correctly computed x∗

siti and succ∗siti for each
requested OD pair (si, ti) in Q.

To trace shortest paths for all the requested OD pairs by [succij ], we set i0 = 1 and
k0 = j0 in the beginning of the algorithm so that at iteration k = j0 the successor columns
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j0, . . . , n are valid for tracing a shortest path tree rooted at sink node k. Otherwise, if
i0 > 1, then Acylic U(i0) and Reverse LU(i0, j0, k0) will not update succst for all s < i0.
This makes tracing shortest paths for some OD pairs (s, t) difficult if those paths contain
intermediate nodes with index lower than i0. Similarly, if k0 > j0, Reverse LU(i0, j0, k0)
will not update succst for all t < k0. For example, in the last step of Figure 2(c), if node
1 lies in the shortest path from node 5 to node 2, then we may not be able to trace this
shortest path since succ12 has not been updated in Reverse LU(1, 2, 3). Therefore even
if Algorithm FRLU gives the shortest distance for the requested OD pairs earlier, tracing
these shortest paths requires more computations.

Corollary 3.9. (a) To trace the shortest path for each requested OD pair (si, ti) in Q, we
have to initialize i0 := 1 and k0 := j0 in the beginning of Algorithm FRLU.
(b) Every APSP problem can be solved by Algorithm FRLU with i0 := 1, j0 := 1, and
k0 := 2.

Proof. (a) The entries succst for each s ≥ i0 and t ≥ j0 are updated in all procedures
whenever a better path from s to t is identified. To trace the shortest path for a particular
OD pair (si, ti), we need the entire tthi column of [succ∗ij ] which contains information of the
shortest path tree rooted at sink node ti. Thus we have to set i0 := 1 so that procedures
G LU , Acyclic L(j0) and Acyclic U(1) will update entries succst for each s ≥ 1 and t ≥ j0.
However, Reverse LU(1, j0, k0) will only update entries succst for each s ≥ 1 and t ≥ k0.
Thus it only gives the tth column of [succ∗ij ] for each t ≥ k0 in which case some entries
succst with 1 ≤ s < k0 and j0 ≤ t < k0 may still contain incomplete successor information
unless we set k0 := j0 in the beginning of this procedure. (b) We set i0 := j0 := 1
because we need to update all entries of the n×n distance matrix [xij ] and successor matrix
[succij ] when solving any APSP problem. Setting k0 := 1 will make the last iteration of
Reverse LU(1, 1, k0) update x11 and succ11, which is not necessary. Thus it suffices to set
k0 := 2 when solving any APSP problem.

Thus Reverse LU(i0, j0, k0) compares the shortest path lengths obtained by previous
procedures with the shortest path lengths for those requested OD pairs (s, t) whose shortest
paths have some intermediate nodes with indices higher than max{s, t}, which means the
resultant xst is optimal, by Corollary 3.8.

Now we discuss the theoretical complexity of FRLU and some implementation techniques
to improve its practical efficiency.

3.4 Complexity and Implementation of Algorithm FRLU

If we skip the triple comparisons for self-loops (i.e. s → k → s), then procedure Forward LU

performs
n−2∑
k=1

n∑
s=k+1

n∑
t=k+1,s ̸=t

(1) = 1
3n(n−1)(n−2) triple comparisons, procedureAcyclic LU(i0, j0)

performs

n−2∑
t=j0

n∑
s=t+2

s−1∑
k=t+1

(1) +

n−2∑
s=i0

n∑
t=s+2

t−1∑
k=s+1

(1) = 1
6 (n − j0 − 1)(n − j0)(n − j0 + 1) +

1
6 (n − i0 − 1)(n − i0)(n − i0 + 1) triple comparisons, and procedure Reverse LU(i0, j0, k0)

performs
n∑

k=k0+1

k−1∑
s=i0

k−1∑
t=j0,s ̸=t

(1) =
n∑

k=k0+1

[(k− i0)(k− j0)− (k−max{i0, j0})] triple compar-

isons. Thus FRLU has an O(n3) worst case complexity. When solving an APSP problem on
a complete graph Kn, FRLU performs exactly n(n− 1)(n− 2) triple comparisons, which is
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the least number of triple comparisons required as shown by Nakamori [23]. Floyd-Warshall
and Carré’s algorithms also perform the same amount of triple comparisons, and are bet-
ter than most SSSP algorithms which require O(n3) for label-setting algorithms or O(n4)
for label-correcting algorithms. For problems on acyclic graphs, we can reorder the nodes
so that the upper (or lower) triangular part of [xij ] becomes empty and only procedure
Acyclic L (or Acyclic U) is required.

For sparse graphs, node ordering plays an important role in the efficiency of our algo-
rithms. A bad node ordering will incur more fill-in arcs which resemble the fill-ins cre-
ated in Gaussian elimination. Computing an ordering that minimizes the fill-ins is NP -
complete [25]. Nevertheless, many fill-in reducing techniques such as Markowitz’s rule [20],
minimum degree method, and nested dissection method (see Chapter 8 in [10]) used in
solving systems of linear equations can be exploited here to speed up FRLU. Since our algo-
rithms do more computations on higher nodes than lower nodes, optimal distances can be
obtained for higher nodes earlier than lower nodes. Thus reordering the requested OD pairs
to have higher indices may also shorten the computational time, although such an ordering
might incur more fill-in arcs. In general, it is difficult to obtain an optimal node ordering
that minimizes the computations required. Here, we use a predefined node ordering to start
with our algorithms.

Although FRLU is an algebraic algorithm, its “graphical” implementation might greatly
improve its practical efficiency. In particular, Forward LU constructs the augmented graph
G′. We can use arc adjacency lists to record the nontrivial entries (i.e. finite entries). If
G′ is sparse (i.e. with few fill-in arcs), then the shortest path computations of Get D L
and Get D U on its acyclic subgraphs G′

L and G′
U can be efficiently implemented to avoid

many trivial triple comparisons that the algebraic algorithms must perform. Note that
the efficiency of procedure Acyclic LU depends on the sparsity of augmented graph G′.
Therefore, any fill-in reducing techniques discussed in the previous paragraph will not only
reduce the running time of Forward LU , but also make Acyclic LU faster.

4 Computational Analysis and Testing on MPSP Problems

MPSP problems usually arise in real-world applications in which only shortest paths between
specific node pairs are requested. In Section 4.1, we demonstrate how FRLU may theoret-
ically save more steps than Floyd-Warshall algorithm in calculating MPSPs on a complete
graph. Then, we compare the numerical performance of FRLU and Floyd-Warshall algo-
rithm for calculating MPSPs on 54 random graphs generated by SPGRID and SPRAND in
Section 4.2. SPGRID and SPRAND are popular network generators designed by [8] , and
have been commonly used for generating test cases for shortest paths.

4.1 An MPSP Example on a Complete Graph

Conventional algebraic APSP algorithms are “over-kill” when used to solve MPSP problems.

For example, when a MPSP problem of 1
4n

2− 1
2n OD pairs Q := {(si, tk) : si = n

2 ,
n
2 +1,

. . . , n, si =
n
2 ,

n
2 + 1, . . . , n, si ̸= ti} in a complete graph Kn with even number of nodes

is solved by Floyd-Warshall algorithm, it first conducts (n − 1)2(n − 2) triple comparisons
(i.e. before conducting the last for loop) and then it computes the shortest distance for the
1
4n

2− 1
2n requested OD pairs in the last for loop of triple comparisons. On the other hand,

FRLU can solve the same MPSP problem with fewer operations: 1
3n(n − 1)(n − 2) triple

comparisons in Forward LU , 1
3
n
2 (

n
2 −1)(n2 −2) triple comparisons in Acyclic LU (by setting
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i0 = j0 = n
2 ), and

∑n
2 −1
i=1 (i2 − i) = 1

24n(n− 1)(n− 2) triple comparisons in Reverse LU (by
setting i0 = j0 = k0 = n

2 ). It saves
7
12n

3− 19
8 n2+ 41

12n− 2 triple comparisons when n ≥ 4.
This example shows how our algorithm FRLU saves more computational work than

Floyd-Warshall algorithm does. FRLU is especially efficient when the requested OD pairs
are grouped in the right lower part of the n × n OD matrix. This may be achieved by
rearranging the node indices. However, such rearrangement may also result in more fill-ins
which incur more triple operations for each procedure of FRLU. How to obtain the best
node ordering such that the total number of triple comparisons will be minimized is not
clear and has shown to be NP -complete [25].

4.2 Numerical Performance of FRLU on Random Graphs

To further compare the empirical performance of FRLU and Floyd-Warshall on solving
MPSPs, we conduct computational tests over 54 random networks generated by SPGRID
and SPRAND designed in [8].

SPGRID generates a sparse grid network defined by XY + 1 nodes, where X and Y
respectively represent number of nodes lying on the X and Y axes, and on average each node
connects with 3 other nodes. On the other hand, SPRAND first constructs a Hamiltonian
cycle, and then adds arcs with distinct random end points. Both SPGRID and SPRAND
have been widely used (see [8].for details) for generating test cases for shortest paths. In
our testings, 9 SPGRID and 9 SPRAND network families of different layout structures are
generated, where each family contains 3 random networks of the same layout structure.

For each generated network that contains n nodes, we further generate 1
2n OD pairs of

MPSPs that cover about 1
2n columns. We have employed the dynamic Markowitz’s rule to

speed up both algorithms. Note that the resultant node orderings do not necessarily group
the requested OD pairs in the right lower part of the n × n OD matrix. As a result, such
settings do not favor FRLU and make fair numerical comparisons for both algorithms.

Table 1: Performance of algorithms FRLU and Floyd-Warshall on SPGRID networks
SPGRID FRLU Floyd-Warshall

X × Y /deg n m time(ms) time(ms)

16×16/3 257 768 3* 3
16×64/3 1025 3072 146* 156
32×32/3 1025 3072 89* 91
64×16/3 1025 3072 57* 57
128×16/3 2049 6144 241 230
16×128/3 2049 6144 1418 1347
16×256/3 4097 12288 19609 15007
256×16/3 4097 12288 1108 962
64×64/3 4097 12288 4112 4087

* represents cases where FRLU has better or equal performance

Table 1 and Table 2 list the average elapse time (in micro seconds) of FRLU and Floyd-
Warshall algorithm for calculating MPSPs on random networks generated by SPGRID and
SPRAND, respectively. As shown in Table 1, for solving MPSPs on SPGRID random
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Table 2: Performance of algorithms FRLU and Floyd-Warshall on SPRAND networks
SPRAND FRLU Floyd-Warshall

n m deg time(ms) time(ms)

256 1019 4 37* 38
256 14393 56 72* 73
256 25735 101 66* 72
256 64084 250 67* 72
512 2048 4 299* 309
512 4096 8 435* 436
1024 4089 4 3692* 4165
1024 8170 8 5756* 5777
1024 231707 226 6710 5184

* represents cases where FRLU has better performance

networks, FRLU has better or similar performance than Floyd-Warshall algorithm in 4 of
9 network families of smaller size. On the other hand, FRLU outperforms Floyd-Warshall
algorithm in 8 of 9 SPRAND network families, as shown in Table 2. These numerical results
indicate FRLU is competitive in calculating MPSPs on general graphs.

5 Conclusions

In this paper we propose a new algebraic APSP algorithm called FRLU, which is inspired
by the fact that calculating an APSP is equivalent to inverting an n × n matrix in path
algebra as discussed in [3,7]. Similar to the Floyd-Warshall algorithm, FRLU can also deal
with graphs with general arc lengths. We have shown that FRLU performs exactly the
same number of steps (i.e. n(n− 1)(n− 2)) as Floyd-Warshall algorithm does in calculating
APSPs on a complete graph of n nodes. Therefore, FRLU also has the theoretically best
complexity (same as Floyd-Warshall’s) for calculating APSPs on dense graphs. In addition,
FRLU can identify a negative cycle in a smaller time bound (up to a constant factor) than
Floyd-Warshall algorithm.

In calculating APSPs on sparse graph by FRLU and Floyd-Warshall algorithms, we sug-
gest using the conventional fill-in reducing techniques for solving systems of linear equations,
such as Markowitz’s rule [20]. The three phases of FRLU can have efficient sparse imple-
mentation since it involves acyclic operations on two acyclic subgraphs of the augmented
graph G′ induced by its first procedure Forward LU . As a result, if G′ is sparse, the second
procedure Acyclic LU can be implemented efficiently by topological ordering. On the other
hand, Floyd-Warshall algorithm may incur a dense graph in its early stages and thus could
not have an effective sparse implementation.

When applied for calculating MPSPs, FRLU may save some computational works than
Floyd-Warshall algorithm by reordering nodes such that the requested OD pairs are closely
distributed in the right lower part of the n×n ODmatrix. We have demonstrated that FRLU
saves up to 7

12n
3− 19

8 n2+ 41
12n− 2 steps than Floyd-Warshall algorithm for calculating some

MPSPs on a complete graph Kn. The results of our computational experiments indicate
FRLU has competitive empirical performance since it outperforms Floyd-Warshall algorithm
on 12 of 18 network families generated by SPGRID and SPRAND.

For future directions, we suggest sparse implementations of Carré’s algorithm [6, 7] for
calculating MPSPs on sparse graphs, since it should take even more advantages of sparsity
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than FRLU.
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